ACES Primer (Autonomous, Connected, Electric, and Shared Vehicles)

Preparing our Region for Autonomous & Connected Vehicles Miniconference – April 26, 2019

• All vehicles SAE Level 5, fully IoT capable, and non-fossil fuel

All commercial trucking driverless and platooned

Downtown cores only accessible to shared AVs, bikes, and peds

Signal-less intersections the norm – vehicles negotiate space-time

dynamically

 Car ownership limited to rural areas where most own a share of a pooled vehicle

 SAE Level 0-4 cars/motorcycles operate under historic licenses on non-freeways and are seen as infrequently as a horse and buggy

- It depends on a combination of how we plan it, what people place emphasis on as important, and what the incentives are
- With connected and automated vehicles, this can be a wide spectrum
- How do we get there?
 - Multidisciplinary Collaboration
 - Testing and Validation
 - Public Engagement
 - Urban, Regional, and Rural Planning
 - Artificial Intelligence
 - Navigating the "messy middle"

ACES Primer

Trends, Implications, Motivations: Safety

Traffic Fatalities Rising

Nationally:

- 2015-2016, Largest two-year increase in 50 years
- In 2017, 37,133 deaths
- 90+% Attributable to Human Error

Wisconsin:

Pedestrian deaths now up to 15% of all traffic deaths

Advanced Driver-Assistance Systems (ADAS)

SAE Levels of Vehicle Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. Partial

2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Connected Vehicles – Overview

- Vehicle-to-Vehicle (V2V)
- Vehicle-to-Infrastructure (V2I)
- Vehicle-to-Anything (V2X)
 - Pedestrians
 - Bicycles / motorcycles / mopeds

- Basic Safety Messages (BSM) broadcast every 1/10th of a second
 - Vehicle position, speed, heading, acceleration, size, brake system status
- Vehicles and infrastructure need to be equipped to gain benefit

Vehicle to Vehicle Communications Road Hazard Notification

Vehicle to Infrastructure Communications Intersection Warning

Biggest Issues Surrounding AV/CV

- Vehicle Cybersecurity
- Information Privacy
- Vehicle Ethics
- Crashworthiness
- System Disengagements / Driver Re-Engagement
- Complex Driving Situations
- Deep Learning / Artificial Intelligence
- Vehicle Assertiveness
- Technology is coming Will we shape it or let it shape us?

ACES Primer

Breadth, Complexity, Edge Cases

Madison CV/AV Corridor – Connected Corridor

- Satisfies SPaT Challenge
- 26 DSRC deployment
- TSP/MMITSS application
- Transit/VRU interaction apps
- Red light violation warning
- V2I general testing
- Simulation-to-design
- Preparation for 5G

WISCONSIN AUTOMATED VEHICLE PROVING GROUNDS

Research and Development

Projects

Madison CV/AV Corridor – Connected Corridor

Research and Development

Automated Shuttle Deployment

WISCINSIN AUTOMATED VEHICLE PROVING GROUNDS

Project Chrono – CV/AV Simulation

- CAVE (Connected autonomous vehicle emulator)
- Multi-agent support
- Vehicles built from subsystems
- DSRC simulation
- LiDAR/Radar simulation

HAVI – **Human AV Interaction**

- Full-scale driving simulation
- Partial automation research
- Driver reengagement
- Disengagement scenarios
- Driver attentiveness / distraction
- ADAS/CV driver notification strategies
- AV interaction with human drivers
- Vehicle assertiveness

WISCINSIN AUTOMATED VEHICLE PROVING GROUNDS

SC&C – Smart and Connected Communities

- Dynamic routing
- First-mile/last-mile connectivity
- Food and transit deserts
- Shared Madison data platform
- Smart parking algorithms
- IoT compatibility
- Urban analytics

WISCHNSIN AUTOMATED VEHICLE PROVING GROUNDS

REACT – Resident Engagement on Automated and Connected Technologies

- Rural engagement workshops
- Aging community outreach
- Low-income community outreach
- Users with disabilities
- Vulnerable industry sector research
- Public outreach and education events
- Multidisciplinary graduate degree development

WISCHNSIN AUTOMATED VEHICLE PROVING GROUNDS

That's great, but what should we do?

- When should states, regions, cities, and municipalities get involved with ACES?
- How should states, regions, cities, and municipalities get involved with ACES?
- What transportation and/or transportation-related problems does your municipality currently have?
- Which groups of your citizens have a disproportionate amount of transportation issues?
- What are the limitations of the current system in serving these citizens?
- What origins/destinations have the greatest transportation needs?

Thank You

Stay Engaged

Visit: WiscAV.org

Call: **608-890-0509**

Email: Feedback@WiscAV.org

WISCNSIN AUTOMATED VEHICLE PROVING GROUNDS

Jonathan Riehl, PhD, PE Wisconsin AVPG, TOPS Lab Civil & Environmental Engineering UW-Madison jonathan.riehl@wisc.edu